
The Semantic Librarian: A search engine built from vector-space
models of semantics

Harinder Aujla1 & Matthew J. C. Crump2
& Matthew T. Cook3 & Randall K. Jamieson3

The Psychonomic Society, Inc. 2019

Abstract
Psychologists have made substantial progress at developing empirically validated formal expressions of how people perceive,
learn, remember, think, and know. In this article, we present an academic search engine for cognitive psychology that leverages
computational expressions of human cognition (vector-space models of semantics) to represent and find articles in the psycho-
logical record. The method shows how psychological theory can be used to inform and aid the design of psychologically intuitive
computer interfaces.

Keywords Cognitive computing . Document representation and retrieval . Search engine . BEAGLE . Computational linguistics

Traditionally, artificial intelligence technologies have been de-
veloped by engineers, computing scientists, and statisticians.
However, cognitive psychology—a discipline dedicated to
developing rigorous accounts of how people perceive, learn,
remember, think, and know—is in a good position to contrib-
ute to the larger endeavor.

A number of forward-looking psychologists have already ap-
plied formal cognitive theories to a variety of problems. Johns
et al. (2018) used amodel of human semantic memory to predict
mild cognitive impairment from verbal behavior. T. Rubin,
Koyejo, Jones, and Yarkoni (2016) used semantic models to
summarize imaging data from the psychological record (see
also T. N. Rubin et al., 2017). Kwantes, Derbentseva, Lam,
Vartanian, and Marmurek (2016) used semantic models to pre-
dict personality profiles from essay data. Bedi et al. (2015) used
semantic models to predict mental health from verbal reports
(see also Cook, 2018). Foltz, Laham, and Landauer (1999) used
a semanticmodel to grade undergraduate essays. Brosowsky and
Crump (2018) used semantic modeling to detect lying in typed
stories. Graesser (2011; see also Nye, Graesser, &Hu, 2014) and
McNamara (e.g., Roscoe et al., 2014; Roscoe & McNamara,
2013) have developed psychologically informed tutoring

systems. Brooks’s (1991) work on cognitive subsumption archi-
tectures has advanced robotics. And, of course, artificial neural
networks have long served as an engine in intelligent systems
(e.g., LeCun, Bengio, & Hinton, 2015; Rosenblatt, 1958;
Rumelhart, Hinton, & McClelland, 1986).

The work presented here follows in this tradition by applying
tools and methods from computational cognitive psychology to
present a cognitive search engine. Because our method is con-
structed using psychological theories of natural language pro-
cessing, it acts as a principled cognitive surrogate that interprets
a user’s query and returns a list of documents that fit with the
user’s intent.

The problem

Scientists and scholars often depend on keyword search engines
to retrieve information. Although keyword matching works
well in some cases, the technique suffers several shortcomings.
First, keywordmatching assumes a simple relationship between
a signifier (i.e., a word) and its signified (i.e., the word’s mean-
ing; de Saussure, 2011). But, that premise is naïve: words can
have multiple meanings (e.g., bank) and a word’s meaning can
change depending on the context in which it appears (e.g., a
rough draft versus a rough ride). As a consequence, keyword
matching can lead to problems in finding documents that use
different words to express the same idea or misconstrue rela-
tionships between documents that use the same words to ex-
press different ideas. Second, different research traditions use
different vocabularies. For example, linguists and

* Harinder Aujla
h.aujla@uwinnipeg.ca

1 University of Winnipeg, Winnipeg, Manitoba, Canada
2 Brooklyn College, New York, NY, USA
3 University of Manitoba, Winnipeg, Manitoba, Canada

Behavior Research Methods
https://doi.org/10.3758/s13428-019-01268-4

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-019-01268-4&domain=pdf
mailto:h.aujla@uwinnipeg.ca

psycholinguists sometimes use different words to discuss the
same problems. Consequently, where meaning overlaps but
vocabulary differs, keyword search can be blind to those con-
nections. Third, keyword search assumes the user’s vocabulary,
but if a user does not already have the vocabulary needed to
conduct a search, they find themselves in a catch 22.

Information scientists have tried to solve the problem by
developing methods for indexing documents by meaning
(Bontcheva, Tablan, & Cunningham, 2014). One dominant
method is semantic annotation—a method in which humans
or machines add semantic metadata to the documents in a
database. The method can be effective: once documents are
semantically annotated, a user can search for documents by
matching to the semantic metadata. However, those methods
still depend upon keyword search and suffer from the short-
comings already noted. So, then, how do we improve search
to make it more intuitive so that the user is interpreted as
intended and search results are thusly optimized?

Vector-space models of semantics

Psychologists have worked since the 1940s to derive a quanti-
tative representation of word meaning. Osgood’s (1952) work
on the semantic differential stands as the seminal contribution
to that effort. In the 1960s and 1970s, focus shifted to deriving a
hierarchical representation of word meaning in propositional
networks (e.g., Anderson, 2013; Collins & Loftus, 1975;
Collins & Quillian, 1969). In the 1980s, the strategy shifted
again toward the quantification of word meaning based on peo-
ple’s introspective ratings about word properties (Friendly,
Franklin, Hoffman, & Rubin, 1982; Gilhooly & Logie, 1980;
D. C. Rubin & Friendly, 1986; Toglia & Battig, 1978). All of
thesemethods laid the foundations for a psychological theory of
language and knowledge. However, they relied on introspective
judgements that were experimentally expensive to obtain,
thereby limiting the scope of experimental efficiency.

In the 1990s, the psychological analysis of semantics leapt
forward with the development of new corpus-based vector-
space models. In contrast to prior methods, the vector-space
models leveraged computational methods to arrive at an effi-
cient, broad, and deep analysis of word meaning based on
patterns of word use in printed text (e.g., newspapers and
encyclopedias).

Naturally, vector-space models differ by formulation, but
they all aspire to a common goal: to represent the semantic
relationships between words in a high-dimensional geome-
try in which words that share meaning are located in similar
regions of semantic space (i.e., typically measured by co-
sine similarity). They also share a method for assessment, in
which success is evaluated against experimental data to en-
sure a correspondence between people’s and the model’s
understanding.

Latent semantic analysis (LSA) is a first-generation vector-
space model of meaning (Landauer & Dumais, 1997).
According to LSA, word meaning is derived from a text corpus
by tabulating word co-occurrence in a word-by-document ma-
trix, transforming the counts in the word-by-document matrix
into corresponding measurements of entropy, decomposing the
transformedword-by-document matrix using singular value de-
composition, and re-constructing the matrix in a reduced di-
mensionality. In the end, each word is represented by a unique
semantic vector. Despite LSA’s simplicity, it tracks human lan-
guage behavior, including the rate of language acquisition, hu-
man vocabulary judgments, word-sorting behavior, free associ-
ation behavior, and categorization.

Bound Encoding of the Aggregate Language Environment
(BEAGLE) is a second-generation semantic model (Jones,
Kintsch, & Mewhort, 2006; Jones & Mewhort, 2007).
BEAGLE operates by deriving a semantic vector for each
word in a text corpus based on principles of holographic re-
duced representation (Plate, 1995), and improves over LSA in
several ways. First, BEAGLE derives a representation of word
meaning that is conditional on word order; LSA does not.
Second, BEAGLE encodes information related to syntax and
grammar; LSA does not. Third, BEAGLE outperforms LSA
in both its scope and precision at tracking human language
behavior. Fourth, BEAGLE is grounded in established princi-
ples of human memory theory, and therefore makes contact
with a history of theoretical and empirical advances in human
cognition (Murdock, 1982, 1983, 1995, 1997).

Building on BEAGLE, BEAGLE Random Permutation
(BEAGLE-RP; Sahlgren, Holst, & Kanerva, 2008) is a more
recent expression of its parent theory that adopts features of
Kanerva’s (1994) spatter codemodel. In contrast to BEAGLE,
BEAGLE-RP uses sparse representation with ternary vectors
instead of real-valued numbers and incorporates index overlap
rather than holographic methods to compute associations. The
use of index overlap renders the theory consistent with
Hebbian learning and long-term potentiation (i.e., neurons that
“fire together wire together”). Recent findings suggest that
semantic modeling of human behavior with BEAGLE-RP
vectors compares favorably to that with BEAGLE vectors
and, on the practical side, yields advantages with respect to
scalability (Recchia, Sahlgren, Kanerva, & Jones, 2015)

Although LSA, BEAGLE, and BEAGLE-RP differ in im-
portant ways, they converge on the common goal of deriving a
psychologically valid vector-space representation of word
meaning. To the extent that they predict human language judg-
ments, all three theories offer a sound psychologically and
empirically informed base representation of word meaning.
But, is that base representation sufficient to support the con-
struction of a useful and psychologically valid search engine?

The work that follows uses BEAGLE and BEAGLE-RP as
the underlyingmethods for developing a semantically indexed
search engine—the “Semantic Librarian.” In a first step, we

Behav Res

apply the methods to derive word meanings from publications
in the field of experimental psychology. In a second step, we
use the word vectors to derive a representation for each doc-
ument in that record. In a third step, we evaluate the system in
a set of objective tests that demonstrate that the engine can
recover a document in noise. In a fourth step, we describe and
articulate a working web interface that scientists can use to
search the psychological record.

The Semantic Librarian

Representation

The corpus

To derive the semantic word vectors, we need a corpus. To
develop the corpus, we scraped data from 27,560 documents
(i.e., titles, abstracts, author names, and keywords) published in
experimental psychology journals, including the Canadian
Journal of Experimental Psychology (1947–2015), Journal of
Experimental Psychology: General (1916–2015), Journal of
Experimental Psychology: Animal Learning and Cognition
(1975–2016), Journal of Experimental Psychology: Applied
(1995–2016), Journal of Experimental Psychology: Human
Perception and Performance (1975–2016), Journal of
Experimental Psychology: Learning, Memory, and Cognition
(1975–2016), and Psychological Review (1894–2016).

Deriving semantic vectors with BEAGLE

Next we applied the BEAGLE method so as to derive a se-
mantic memory vector for each word in the corpus.

Broadly, BEAGLE works by “reading” a text corpus and,
on route, encoding a memory vector that represents the mean-
ing of each word in that corpus. Mechanistically, the model is
expressed in algebra.

At the outset of a simulation, each of the i unique words in the
corpus is represented by a randomly generated environmental
vector, ei. Each environment vector has dimensionality n and
each element in an environment vector takes a value randomly
sampled from a normal distribution with mean zero and variance
1/n. In the simulations that follow, and consistent with tradition,
dimensionality was set to n = 1,024. Although the semantic
memory vector for each word changes as the model reads the
corpus, the environment vectors are stable over a simulation;
serving as unique identifiers for the words in the corpus (i.e.,
each word’s orthographic and phonological identity).

Next, the model “reads” the corpus one sentence at a time to
build a semantic memory vector for each word,mi. The seman-
tic memory vector for each word is composed of two kinds of
information: context information and order information.

Context information is computed by summing the environ-
mental vectors for all other words in the same sentence (i.e.,
excluding the word of interest)

mi ¼ mi þ ∑ j¼λ
j¼1e j; where i≠ j; ð1Þ

here, mi is the semantic memory vector for word i in the
sentence, ei is the environment vector for word i in the sen-
tence, and λ is the number of words in the sentence. For
example, after reading the sentence, “A dog bit the mailman,”
the memory vector for dog is updated as mdog = mdog + ebit +
emailman, the memory vector for bit is updated as mbit = mbit +
edog + emailman, and the memory vector formailman is updated
as mmailman = mmailman + edog + ebit. Note that all of words in
the sentence are not included in the construction of the context
representation. The words that are excluded are standard in a
list of stop words. Stop words are excluded because they occur
so often in text that including them forces all words to become
unrealistically similar to one another.

Summing the environment vectors in this manner causes the
memory vectors for all words that co-occur in the same sentence
to grow similar to one another; because they are composed of the
same environment vectors. However, the method also encodes
indirect (i.e., higher-order) associations between words. This
happens because words with shared meaning co-occur with the
same words, even if the words with shared meaning never co-
occur in the same sentence. For example, even if dog and beagle
do not co-occur in the same sentence in the corpus, they become
similar to one another by virtue of having common words
summed into their representations (e.g., loyal and vicious).

Order information is computed by encoding information
about which words follow one another in a sentence and
updating the memory vector with that information. In partic-
ular, the first-order association between words (i.e., immedi-
ately adjacent words) is encoded using noncommutative cir-
cular convolution; hereafter denoted as circular convolution.

Circular convolution is a vector operation that binds two
vectors, x and y, to produce an associative vector, z:

zi ¼ ∑n−1
j¼0xjmodn � y i− jð Þmodn for i ¼ 0 to n−1f g; ð2Þ

where, n is the dimensionality of x and y and the vectors x and
y are indexed by modulo subscripts. A convenient property of
circular convolution is that it produces a vector z that is the
same dimensionality as the inputs x and y, thereby allowing
the association between x and y to be summed into a single
vector along with the context information.

Higher-order sequential information in a sentence (e.g.,
sequences of three, four, or more words) is computed by ap-
plying circular convolution recursively and incorporating
those computations into the word’s semantic vector,

mi ¼ mi þ ∑
j¼pλ− p2−pð Þ−1
j¼1 bindij; ð3Þ

Behav Res

where, mi is the memory vector for word i, p is the position of
word i in the sentence, and bindij is the jth convolution for the
word being coded.

To illustrate the operation, the order information for the
word dog, mdog, in the sentence, “a dog bit the mailman,” is
encoded as a sum of the following:

binddog;1 ¼ ea⊛Φ
binddog;2 ¼ Φ⊛ebit

)
Bigrams

binddog;3 ¼ ea⊛Φ⊛ebit
binddog;4 ¼ Φ⊛ebit⊛ethe

)
Trigrams

binddog;5 ¼ ea⊛Φ⊛ebit⊛ethe
binddog;6 ¼ Φ⊛ebit⊛ethe⊛emailman

)
Quadgrams

binddog;7 ¼ ea⊛Φ⊛ebit⊛ethe⊛emailman

)
Quintagram;

ð4Þ

where denotes circular convolution and Φ is a constant and
universal placeholder (i.e., a unique environment vector) used
in the computation of order information and that is the same
for every word in every position in every sentence.

Taken together, a word’s meaning is equal to the sum of its
context and order information after the model has “read” an
entire text corpus,

mi ¼ mi þ ∑ j¼λ
j¼1e j þ ∑

j¼pλ− p2−pð Þ−1
j¼1 bindij; ð5Þ

where mi is the semantic memory vector for word i, ej is the
environment vector for word j in the sentence, λ is the number
of words in the sentence, and p is the position of word i in the
sentence.

In summary, BEAGLE uses the environment vectors to
develop semantic memory vectors that represent the meaning
of each word in the corpus as a combination of both its context
and order information. As the algebra indicates, the theory
predicts that a word’s meaning will reflect its history of co-
occurrence with, and position relative to, other words in
sentences. Thus, BEAGLE implements the wisdom from lin-
guistics that “You shall know aword by the company it keeps”
(Firth, 1957).

Deriving semantic vectors with BEAGLE-RP

BEAGLE-RP is theoretically consistent with BEAGLE.
However, it applies a different method to build the seman-
tic vectors (see Recchia et al., 2015; Sahlgren et al.,
2008).

First, each unique word in the corpus is represented by an
environmental vector of 3,000 dimensions, with 30 values of
+ 1 and 30 of – 1 assigned at random to its elements (all other
elements equal to zero).

Context vectors are defined in a similar fashion to how they
are in BEAGLE:

mi ¼ mi þ ⋁ j¼λ
j¼1e j where i≠ j; ð6Þ

here,mi is the memory vector for word i, V is an index operator
(more on this below), λ is the number of words in the sentence,
and ej is the environment vector for word j in the sentence.

The V index operator computes a vector of the same di-
mensionality as the inputs, such that element j is equal to
element j in the input vectors if at least two of the words in
the sentence share the same value (i.e., + 1 or – 1). Figure 1
presents an example of computing the context vector for the
word “dog” in the sentence “a dog bit the mailman.” As is
shown, both ebit and emailman share a value of – 1 in the fifth
index, and therefore the sentence vector includes a single non-
zero value (i.e., – 1 in index 5).

As is indicated in Eq. 6, the context vector is added to the

word’s memory vector. Thus, whereas ⋁ j¼λ
j¼1e j contains only the

values + 1, – 1, and 0 in its elements, each element in a memory
vector,mi, can contain any value between –w and +w, wherew
is the number of times that word i appeared in the corpus.

The BEAGLE-RP model captures order information by
nearly the same method as it captures context information.
However, the order information for a word at position p in a
sentence is computed on the basis of the words that appear in
positions p – 2, p – 1, p + 1, and p + 2 in the same sentence. In
addition, the environment vectors for the words in positions p
– 2, p – 1, p + 1, and p + 2 are changed depending on their
serial position—the operation that identifies each unique word
as a function of its position in a sentence. Thus, order infor-
mation in BEAGLE-RP is computed as

mi ¼ mi þ ⋁ j¼pþ2
j¼p−2 e j; where i≠ j and 0 < j≤λ; ð7Þ

mi is the memory vector for word i, V is the index operator
already described, ej is the environment vector for the word at
position j in the sentence following permutation based on its
position relative to p, and λ is the length of the sentence. By
tradition, and for the sake of convenience, the position vectors
in our simulations were generated by shifting the indices of the
original environmental vector in position p – 2 two places to
the left, in position p – 1 one place to the left, in position p + 1
one place to the right, and in position p + 2 two places to the
right, with the values for indices ≤ 0 or ≥ 3,000 wrapped
around to the end or start of the vector, respectively. Finally,
we deviated from the procedure described by Recchia et al.
(2015) with respect to the treatment of sentence boundaries.
Whereas Recchia et al. incorporated order information with a
p ± 2 window around the target word, irrespective of sentence
position, we only incorporated order information within a ± 2
word boundarywithin a sentence. For example, only the order
information for words preceding the last word in a sentence

Behav Res

were included in its order vector.
In summary, BEAGLE-RP uses the environment vec-

tors to construct semantic memory vectors that represent
the meaning of each word in the corpus as a combination
of both its context and order information. As the algebra
indicates, the theory, like BEAGLE, predicts that a word’s
meaning will reflect its history of co-occurrence with, and
position relative to, other words in sentences.

Building the document vectors

Once we had derived the semantic vectors for all 40,517
words in the 27,560 documents in the journal corpus using
both the BEAGLE and BEAGLE-RP methods, we used the
word vectors to construct representations for each of the
27,560 documents.

Each document vector was computed as the sum of the
semantic memory vectors that corresponded to all w words
in the document’s title, abstract, and keyword list:

di ¼ ∑ j¼w
j¼1mj; ð8Þ

where di is the semantic summary of document i, mj is the
semantic memory vector corresponding to word j in document
i, andw is the number of words in document i. Once construct-
ed, the document representation was stored to the database of
27,560 documents.

Searching the document space

To search the document space, we constructed a query vector,
q, that was equal to the sum of the semantic memory vectors

corresponding to all w words in the query:

q ¼ ∑ j¼w
j¼1mj; ð9Þ

where q is the search query, mj is the semantic memory vector
for word j in the search query, andw is the number of words in
the search query.

Once computed, the search query, q, was used to search the
database, and a ranked list of the documents was retrieved.
The ranked list was constructed by, first, computing the cosine
similarity between q and the representation for each of the i =
1 . . . 27,560 document vectors in the database:

Sim q; dið Þ ¼
∑
j¼n

j¼1
qj � d jffiffiffiffiffiffiffiffiffiffiffi

∑
j¼n

j¼1
q2j

s ffiffiffiffiffiffiffiffiffiffiffi
∑
j¼n

j¼1
d2j

s ; ð10Þ

where q is the vector representing the search term, di is the
semantic vector summary of document i, and n is the dimen-
sionality of the vectors under comparison. Once the similarity
of the query to all documents was computed, a ranked list of
the 27,560 documents was returned, so that the document
most similar to q was returned first (i.e., rank = 1) and the
document least similar to q was returned last (i.e., rank =
27,560). Thus, a document retrieved itself perfectly if it re-
trieved itself at rank = 1.

In summary, we derived vector representations of word
meaning using BEAGLE and BEAGLE-RP, we used the word
representations to encode documents, and we used a search
query to retrieve a ranked list of all documents.

Index

1 2 3 4 5 2996 2997 2998 2999 3000

ea =
edog =
ebit =
ethe =

emailman =

Fig. 1 An example of computing the context vector for the word dog in the sentence “a dog bit the mailman”

Behav Res

Assessing the system

At face value, our method presents a psychologically valid
semantic search engine: It uses modern theories of human se-
mantic memory to represent and retrieve documents. But, does
it work? To evaluate the system, we developed a set of simple,
verifiable tests that provide a rational basis for discriminating
performance between models.

Simulation 1: Recovering a target document

In Simulation 1, we asked whether our method can recover a
target document. To answer the question, we conducted a
Monte Carlo study. In each simulation, we sampled a docu-
ment from the journal database, randomly sampled a percent-
age of words from the document’s abstract, title, and key-
words; constructed a search query from that set of randomly
sampled words; queried the database; and recorded the retriev-
al rank of the target document. To evaluate the system’s
loss tolerance, we conducted 1,000 simulations for queries
composed of 5%, 10%, 25%, 50%, and 100% of the words
from the document’s abstract, title, and keywords.

To assess the model against rational controls, we conducted
two additional sets of simulations. The first control method re-
peated the Monte Carlo simulation, but used random vectors
rather than the semantic vectors to define word meaning (i.e.,
the environment rather than the semantic memory vectors). The
second control method eschewed the vector-based method alto-
gether and constructed the document list based on the number of
times each word in the query occurred in a document. In those
simulations, the document retrieved at rank = 1 had the largest
word overlap with the words sampled from the target document.

Figure 2 shows the median retrieval ranks for the target
document, depending on the percentage of words included
in the query.

As is shown in Fig. 2, all four methods worked well,
performing perfectly in the majority of simulations (i.e., me-
dian rank = 1) and retrieving the target document no worse
than a median rank of 12 out of 27,560, even when only a very
small percentage of words were sampled to the query. In fact,

as long as more than 25% of the words in the document were
included in the query, all methods retrieved the target docu-
ment at median rank = 1. We conclude that the semantic
search method can recover a target document very well and
that it is surprisingly tolerant to a noisy query. However, that
conclusion was true of all methods and raises questions about
the value of using semantic vectors at all.

Simulation 2: Comparison of semantic
and nonsemantic vector methods

To expose the advantage of using semantic vectors, we
reconducted Simulation 1, but we constructed the search que-
ry using semantic associates of the words from the target doc-
ument (e.g., the word memory from the document was re-
placed by the word storage in the query). For this simulation,
we asked how well a target document could be retrieved on
the basis of a match to the semantic relationship rather than
the particular words in a query. To conduct the simulation, we
used semantic associates in the query that were nearest neigh-
bors to the words sampled from the document (in the
nonsemantic simulations, we used the environment vectors
that corresponded to the nearest neighbors).

The results of the simulation are presented in Fig. 3; word
match results are not presented because the method for replacing
words with synonyms rendered the method entirely ineffective.

As is shown in Fig. 3, both semantic methods recovered the
target document much better than the nonsemantic method. In
fact, the nonsemantic method does very poorly, even when all
words in the document are used. In contrast, both semantic
methods perform very well unless a very small percentage of
words is included in the query (i.e., less than 10%). Performance
is even more impressive if we consider that the words included
in the search query were sampled at random and, therefore, can
include few or no directly relevant content words.

In summary, when the search query is composed of words
from the document, the semantic and nonsemantic vector
methods perform well. However, when the search query is com-
posed of semantically related words, the semantic methods per-
form much better than the nonsemantic method. Of course, the

0 20 40 60 80 100

2
4

6
8

10

Percentage of document in quer y

M
ed

ia
n
re
tri
ev
al

ra
nk BEAGLE−RP vectors

BEAGLE vectors
Nonsemantic vectors
Word match

Fig. 2 Simulation 1: Target document retrieval using the BEAGLE-RP, BEAGLE, nonsemantic, and word match methods. Performance is shown as a
function of the percentage of words sampled to the search query

Behav Res

advantage has very strong practical importance: Users should be
able to express the intent of their search without needing to use
the exact words in the document they are searching for.

Simulation 3: Relationship between semantic
and nonsemantic search

Simulations 1 and 2 provided initial evidence that a document
can be recovered better using semantic than nonsemantic
search. However, the results have been limited to expressing
the difference in recovery of a single target document. To
broaden our analysis, we conducted a simulation to measure
the extent to which document rankings produced by a seman-
tic search correspond to the document rankings produced by
the nonsemantic and word match searches.

Simulation 3 was a repetition of Simulation 1, but we mea-
sured the agreement (i.e., Spearman rank correlation) between
document ranks that were returned for all 27,560 documents
using the BEAGLE-RP, BEAGLE, nonsemantic, and word
match methods.

The simulation results are presented in Fig. 4. Error bars
show one standard deviation above and below each mean.

There are two key results in Fig. 4. First, agreement
between the retrieval profiles using all methods improved
with the percentage of words included in the search query.
Second, the strength of agreement was largely consistent

between the different methods, with one key exception:
the two semantic methods (i.e., BEAGLE-RP and
BEAGLE) agreed very strongly.

We concluded that using semantic vectors is not crucial to
retrieving a particular target document (see Simulation 1), but
using semantic vectors retrieves a different ranked profile of
related documents—even when words were not replaced by
semantic associates in the search query. To the extent that the
methods disagree, the semantic method returns different doc-
uments than the nonsemantic and word match methods.
However, the agreement between BEAGLE-RP and
BEAGLE shows that the particular instantiation of the seman-
tic theory used to derive the underlying word meanings has
only a modest influence on the documents retrieved.

Taken together, Simulations 1–3 establish that our semantic
search engine can find a target document, that results are con-
sistent with BEAGLE and BEAGLE-RP, and that semantic
search differs from nonsemantic and word match searches.
Admittedly, none of the results reported provide information
about what documents our semantic search engine retrieves—
they merely establish feasibility.

In the next section, we implement the method in a search
engine interface and show that it can be used to locate related
documents and articulate the structure in the document data-
base. Because BEAGLE vectors have a lower dimensionality
than BEAGLE-RP vectors, computations of similarity are more

0 20 40 60 80 100
0

20
00

60
00

Percentage of document in quer y

M
ed

ia
n
re
tri
ev
al

ra
nk BEAGLE−RP vectors

BEAGLE vectors
Nonsemantic vectors

Fig. 3 Simulation 2: Target document retrieval for queries constructed with semantic associates using the semantic and nonsemantic vector models.
Performance is shown as a function of the percentage of words sampled to the search query

0 20 40 60 80 100

0.
0

0.
4

0.
8

Percentage of document in quer y

M
ea

n
S
pe

ar
m
an

ra
nk

co
rr
el
at
io
n

BEAGLE−RP/BEAGLE
BEAGLE−RP/Nonsemantic
BEAGLE/Nonsemantic
BEAGLE−RP/Word match
BEAGLE/Word match
Nonsemantic/Word match

Fig. 4 Simulation 3: Agreement of retrieved lists using the BEAGLE-RP, BEAGLE, nonsemantic, and word match methods. Performance is shown as a
function of the percentage of words sampled to the search query

Behav Res

efficient with BEAGLE. Therefore, we use the BEAGLE rather
than BEAGLE-RP vectors for the search interface.

A search interface

Thus far, we have provided a formal description of a method
for semantic representation and retrieval, but we have not
offered a way to use the method. To solve the problem, we
developed a search interface using the Shiny package in R.
The best way to use the search engine is to download and run a
local copy in RStudio that we have made available in
an online repository at https://osf.io/wfcmg/files/ (see the
Appendix). However, an online copy of the interface can be
inspected directly from https://crumplab.shinyapps.io/
SemanticLibrarian/. The online version works the same as
the copy in the repository, but takes time to download
through the browser and will run slower due to data exchange.

A principal purpose of an academic search engine is to find
published articles that are relevant to a search query. For ex-
ample, given the query “implicit learning,” one might hope to
find articles covering that topic.

Figure 5 presents a screen shot of our main interface (i.e.,
the SemanticSearch tab), searching for “perception attention
memory” using the “OR” search method. Using “OR” returns
a list of the documents that are most similar to any one of the
individual words in the search query. If “compound search”
were used, the documents returned would be those most

similar to the sum of the words in the search query (i.e., q =
mmemory + mattention + mperception).

As is shown at the bottom of Fig. 5, search for “perception
attention memory” returns a list of the top semantically related
documents. The most similar document appears at the top of
the list, the second most similar document appears second,
and so on. By default, that list is 100 documents long; how-
ever, the number of articles in the search list can be contracted
or expanded using the number of articles slider.

Also shown in Fig. 5, the search results are shown as a two-
dimensional plot of themost similar documents; in this example,
the top 500 most related articles. This geometric representation
of the search results is a two-dimensional multidimensional scal-
ing (MDS) solution based on the cosinematrix for all documents
in the graph (i.e., as selected by the number of articles slider).

To inspect the plot, a user can hover their mouse over any
point in the space. Doing so reveals its title (e.g., in the graph,
Cutting’s 1983 article “Four Assumptions About Invariance in
Perception” is shown). Clicking on a point in the graph pre-
sents the document’s abstract and related publication informa-
tion on the left side of the screen, along with a weblink to the
article’s information in the Google scholar database.

In addition to plotting the results in a two-dimensional and
searchable graph, the interface provides the user with the op-
tion to categorize the articles in the space with k means clus-
tering (i.e., as implemented using the kmeans() clustering
function in R). The number of clusters is selected by using
the number of clusters slider. If a user asks for more than one

Fig. 5 A screen shot of the semantic search engine using the OR search function on the search term “perception attention memory.” The plot shows the
results for documents published between 1890 and 2016, with k means clustering applied to divide the search results into three semantic clusters

Behav Res

https://osf.io/wfcmg/files/
https://crumplab.shinyapps.io/SemanticLibrarian/
https://crumplab.shinyapps.io/SemanticLibrarian/

cluster, the interface colors the points in the semantic docu-
ment space to indicate documents that belong to each of k
semantic clusters. Clustering serves to identify groups of arti-
cles that are related to the search term in different ways.

To illustrate, Fig. 5 presents a three-cluster solution for our
search of “perception attention memory.” Because we used the
OR search function and becausewe asked for three clusters, it is
unsurprising that the method finds and then discriminates arti-
cles focused on topics in perception (green triangles), attention
(purple circles), and memory (yellow squares).1 Also shown,
the clustering reveals a sensible outcome concerning the rela-
tionships between clusters: Documents on perception and atten-
tion border one another, documents on attention and memory
border one another, but documents on perception and memory
do not. That organization of topics is consistent with our pro-
fessional intuition that work on attention serves as the bridge
between work on perception and memory. In our experience,
selecting a small number of clusters reveals broad and mean-
ingful distinctions whereas requesting a large number of clus-
ters serves to over differentiate the search set in ways that be-
come increasingly difficult to understand. Because the method
is based on Monte Carlo simulation, the presented k means
solution can change from request to request. However, in our
experience, the solutions are pretty stable and instructive.

In summary, entering a search query retrieves the most
related documents (where the number of documents returned
is specified by the user), with the list being presented as an
ordered list as well as a corresponding and interactively
searchable two-dimensional MDS plot that can be read as
the “semantic neighborhood” of the search query. Clustering
tools are available to help the user organize their inspection of
the local neighborhoods within the global solution and to find
groups of articles that relate to the search query in different
ways. Because the search interface is point and click, a user
does not need to directly engage the computational underbelly
of the model or develop code to render the search results in a
readable form.

Document neighborhoods

The interface also supports different kinds of searches. For
example, a user can select the ArticleSimilarity tab to select
an article title from the database and submit that article as a
search query—the interface is set up so that titles
autocomplete (e.g., typing “information theory” into the
search box will provide a dropdown list of articles that include
both of those words).

Figure 6 presents an example of article search for the article
“Information Theory and Immediate Recall,” authored by
Aborn and Rubenstein (1952).

Submitting an article as a search term produces the same
style of output that free search does: an ordered list of docu-
ments and a two-dimensional MDS plot that shows the article’s
neighborhood (see Fig. 6). As in free search, the number of
articles slider allows the user to specify the number of articles
returned, hovering the mouse over a point in the graph reveals
the article title, and clicking on a point displays its abstract and
other information in the search box at the left side of the screen.
Manipulating the number of clusters slider colors the points in
the space, helping a user locate and quickly search through local
neighborhoods in the global solution.

Author neighborhoods

The search engine and interface can also be used to infer and
inspect the relationships between the authors of articles in the
database. To use this function, a user selects the
AuthorSimilarity tab and, then, submits an author name from
the database as a search term—the interface is set up so that
titles autocomplete (e.g., typing “John” into the search box
will provide a dropdown list of authors with the name John
in their publication name).

To conduct author search, each author’s representation in
the semantic space, ai, is computed as the sum of all document
vectors that the author has published,

ai ¼ ∑
j¼d

j¼1
d j; ð11Þ

where ai is the representation of author i, d is the number of
documents published by author i, and dj is the representation
of document j published by author i. Critically, BEAGLE
allows us to represent authors in the same dimensionality
space as words and documents. Thus, authors can not only
be compared to one another, but to individual words and doc-
uments as well (more on this shortly).

Figure 7 presents an example using the author “Vokey,
John R.”

Issuing an author search produces an author’s semantic
neighborhood in the same style of output in the free search
and article search queries (see Figs. 5 and 6). However, the
points correspond to authors rather than articles. Once the space
is drawn, the user can manipulate the output in the familiar
ways. The number of authors slider allows the user to specify
the number of authors that appear in the semantic neighbor-
hood. Hovering the mouse over a point reveals the author’s
name. Manipulating the number of clusters slider colors the
points in the space to locate groups of authors who are similar
to the target author in different ways. In our experience, author
search can help users discover scientists who examine ideas

1 If we had used the “compound” search function, the articles returned would
match on all three terms, thus providing a different search set and, thus, a
different clustering of documents.

Behav Res

similar to those that the users themselves are interested in, but of
whom they may not previously have been aware because of
differences in language use.

Article/author similarity

Finally, the search interface provides an option to find authors
whose work is related to a target article. To use this function, a
user can select the ArticleAuthor tab and select an article from
the database of article titles—the interface is set up so that
titles autocomplete (e.g., typing “implicit learning” into the
search box will provide a dropdown list of articles with both
words in the publication title).

Figure 8 presents an example of the output for this function,
using the article “Implicit Learning and Tacit Knowledge” by
Arthur S. Reber (1989).

Issuing an article/author search produces a list of authors
whose work is most similar to the target article. Manipulating
the number of entries dropdown box can be used to change the
number of authors displayed in the list, ordered from most to
least similar.

In summary, the search interface provides a way for scientists
to inspect the psychological record by free search, article search,
author search, or article/author search. The search results are
presented in two ways: as an ordered list and/or as a two-
dimensional MDS plot. The two-dimensional plot can be

manipulated to reveal clusters of similar articles or authors and
supports an intuitive way to display and inspect the results of a
search. All of the results are produced using BEAGLE (i.e., a
modern theory of semantic memory) as the underlying inference
engine. To the extent that BEAGLE stands as a valid theory of
psychological semantics, the results that our system produces
stand as a psychologically valid method for document search
and retrieval.

General discussion

By tradition, document retrieval systems are premised on
methods developed outside of psychological investigation.
The Semantic Librarian presented here takes a different phil-
osophical approach. Rather than reverse-engineer a computa-
tional solution, we used modern psychological theories of
human semantic memory to derive a base representation of
word meanings and leveraged those representations to per-
form semantically indexed search.

To evaluate the system, we have reported simulations to
show that the system can recover a target document, is tolerant
to incomplete search queries, and is superior to nonsemantic
and word match methods. Encouraged by those successes, we
implemented the method in a user interface that supports easy
interaction with the model. We rendered the search results

Fig. 6 A screen shot of the semantic search engine to find documents similar to a specified article. The plot shows results for 100 documents published
between 1890 and 2016, with k means clustering applied to divide the search results into three semantic clusters

Behav Res

Fig. 7 A screen shot of the semantic search engine to find authors who are similar to a specified name. The plot shows results for 100 authors who
published articles in the database; k means clustering is applied to divide the search results into three semantic clusters

Fig. 8 A screen shot of the semantic search engine to find authors who are similar to a specified article. The list shows the results for 25 authors who
published work in the database

Behav Res

using both a ranked list presentation and a two-dimensional
MDS display. The MDS plots make for an intuitive visual
rendering of the relationships between search terms, articles,
and authors and makes inspection of similar documents quick
and easy.

Our approach is grounded in a validated descriptive theory
of language behavior and, so, verifies that a descriptive theory
of semantics can be used to construct a meaningful search
engine. However, we have not yet conducted an analysis of
model fit to user intent. To do so, we would need to collect
data on search behavior and subjective evaluation of the
search engine from domain experts (i.e., university professors
and graduate students). We plan to perform a descriptive anal-
ysis of the search engine’s performance in the future and em-
pirically evaluate the extent to which the documents it returns
are meaningful and appropriate.

Although we have presented our method in the context of
search engine design, it can be applied to other problems. For
example, the technique can be used to match manuscripts to
reviewers, to develop recommender systems for books (e.g.,
Johns & Jamieson, 2018), and to visualize the relationships
between verbal responses by participants in qualitative re-
search designs. However, we are most excited about the pros-
pect that our method might be useful to researchers in the
domain of computational humanities (Moretti, 2005) for
conducting a large-scale analysis of content and structure in
any document database (e.g., Green & Feinerer, 2015; Green,
Feinerer, & Burman, 2013, 2014, 2015a, 2015b; see also
Green, 2016).

In fields outside of psychology, cognitive computing re-
search has taken an engineering-style approach to the design
of cognitive systems. In that tradition, researchers identify a
problem, define a goal, and engineer a system to satisfy that
goal. The methodwe have presented here illustrates a different
approach to cognitive computing. We used theories of repre-
sentation and retrieval developed to understand human cogni-
tion to inform the design of an artificial cognitive system for
document representation and retrieval (see also Deerwester,
Dumais, Landauer, Furnas, & Harshman, 1990).

We view the difference between traditional and
psychologically inspired cognitive computing to be
analogous to the difference between traditional and
biologically inspired engineering, in which scientists
leverage the lessons and study of natural cognitive systems
to solve complex applied problems. For example, Tero et al.
(2010) studied how slime molds (Physarum polycephalum)
develop efficient and fault-tolerant transportation networks
(see also Zhu, Kim, Hara, & Aono, 2018, for a similar
analysis in relation to computing and complex problem
solving). They used that knowledge to design a computational
method to design and optimize human transportation net-
works (e.g., rail systems). Just as Tero et al. demonstrated that
the experimental study of slime molds can produce insights

for the design of transportation networks, we are hopeful that
our analysis helps point out that basic science conducted to
understand human semantic behavior can provide productive
practical insights and solutions for search engine design.

Author note This research was supported by a Discovery
Grant and by a CGS-M Scholarship from the Natural
Sciences and Engineering Research Council of Canada, to
R.K.J. and M.T.C., respectively.

Appendix

Semantic Librarian Readme

This repository at https://osf.io/wfcmg/ contains a SHINYapp
of the Semantic Librarian that can be run locally on a user’s
computer. An online version of this app is available at http://
crumplab.shinyapps.io/athena/

Steps to run locally:

1. Install R and RStudio.
2. Download the SemanticLibrarian folder to your desktop

from https://osf.io/wfcmg/.
3. Install the Shiny package.
4. Package dependencies. All of the R packages used for this

Shiny app are in the Packrat folder. You may be able to
run this app without first installing those packages. If not,
use the list in the packrat folder to install all of the neces-
sary packages.

Running the app:

5. Open the .Rproj file to load this R project into RStudio.
6. The Shiny app files are contained in global.R, server.R,

and ui.R. Opening any of those files in RStudio should
allow you to view a run app button in the text editor. Press
the Run app button to run the app.

The folder SemanticLibrarianBeta contains a development
version with some additional features. To run that version,
make sure the .RData files in the allData folder (this version)
are copied into the allData folder in the beta version.

References

Aborn, M., & Rubenstein, H. (1952). Information theory and immediate
recall. Journal of Experimental Psychology, 44, 260–266.

Anderson, J. R. (2013). ACT’s propositional network. In Language,
memory, and thought (pp. 146–181). Psychology Press.

Bedi, G., Carrillo, F., Cecchi, G. A., Slezak, D. F., Sigman, M., Mota, N.
B., . . . Corcoran, C. M. (2015). Automated analysis of free speech
predicts psychosis onset in high-risk youths. NPJ Schizophrenia, 1,
15030. https://doi.org/10.1038/npjschz.2015.30

Behav Res

https://osf.io/wfcmg/
http://crumplab.shinyapps.io/athena/
http://crumplab.shinyapps.io/athena/
https://osf.io/wfcmg/
https://doi.org/10.1038/npjschz.2015.30

Bontcheva, K., Tablan, V., & Cunningham, H. (2014). Semantic search
over documents and ontologies. In N. Ferro (Ed.), Bridging between
information retrieval and databases (pp. 31–53). Berlin: Springer.

Brooks, R. (1991). New approaches to robotics. Science, 253, 1227–1232.
Brosowsky, N., Crump, M. J. C. (2018). You should hate this movie!

Detecting concealed attitudes of online persuaders. Poster presented
at the Annual Meeting of the Psychonomic Society, New Orleans.

Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of
semantic processing. Psychological Review, 82, 407–428. https://
doi.org/10.1037/0033-295X.82.6.407

Collins, A. M., & Quillian, M. R. (1969). Retrieval time from semantic
memory. Journal of Verbal Learning and Verbal Behavior, 8, 240–
247.

Cook, M. (2018). The mathematics of clinical diagnosis: Cognitively-
inspired computational psychiatry (Master’s thesis). University of
Manitoba, Winnipeg, MB.

Cutting, J. E. (1983). Four assumptions about invariance in perception.
Journal of Experimental Psychology: Human Perception and
Performance, 9, 310–317. https://doi.org/10.1037/0096-1523.9.2.310

de Saussure, F. (2011). Course in general linguistics (P. Meisel & H. Saussy,
Eds.; W. Baskin, Trans.). New York: Columbia University Press.

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., &
Harshman, R. A. (1990). Indexing by Latent Semantic Analysis.
Journal of the American Society for Information Science, 41, 391–407.

Firth, J. R. (1957). A synopsis of linguistic theory, 1930–1955. In
Philological Society (Great Britain) (Ed.), Studies in linguistic
analysis. Oxford, UK: Blackwell.

Foltz, P. W., Laham, D., & Landauer, T. K. (1999). The intelligent essay
assessor: Applications to educational technology. Interactive
Multimedia Electronic Journal of Computer-Enhanced Learning,
1, 939–944.

Friendly, M., Franklin, P. E., Hoffman, D., & Rubin, D. C. (1982). The
Toronto Word Pool: Norms for imagery, concreteness, orthographic
variables, and grammatical usage for 1,080 words. Behavior
Research Methods & Instrumentation, 14, 375–399. https://doi.
org/10.3758/BF03203275

Gilhooly, K. J., & Logie, R. H. (1980). Age-of-acquisition, imagery,
concreteness, familiarity, and ambiguity measures for 1,944 words.
Behavior Research Methods & Instrumentation, 12, 395–427.
https://doi.org/10.3758/BF03201693

Graesser, A. C. (2011). Learning, thinking, and emoting with discourse
technologies. American Psychologist, 66, 746–757.

Green, C. D. (2016). A digital future for the history of psychology?
History of Psychology, 19, 209–219.

Green, C. D., & Feinerer, I. (2015). The evolution ofAmerican Journal of
Psychology, 1887–1903: A network investigation. American
Journal of Psychology, 128, 387–401.

Green, C. D., Feinerer, I., & Burman, J. T. (2013). Beyond the schools of
psychology 1: Digital analysis of Psychological Review, 1894–1903.
Journal of the History of the Behavioral Sciences, 49, 167–189.

Green, C. D., Feinerer, I., & Burman, J. T. (2014). Beyond the schools of
psychology 2: Digital analysis of Psychological Review, 1904–1923.
Journal of the History of the Behavioral Sciences, 50, 249–279.

Green, C. D., Feinerer, I., & Burman, J. T. (2015a). Searching for the
structure of early American psychology: Networking Psychological
Review, 1894–1908. History of Psychology, 18, 15–31.

Green, C. D., Feinerer, I., & Burman, J. T. (2015b). Searching for the
structure of early American psychology: Networking Psychological
Review, 1909–1923. History of Psychology, 18, 196–204.

Johns, B. T., & Jamieson, R. K. (2018). A large-scale analysis of variance
in written language. Cognitive Science, 42, 1360–1374. https://doi.
org/10.1111/cogs.12583

Johns, B. T., Taler, V., Pisoni, D. B., Farlow, M. R., Hake, A. M.,
Kareken, D. A., Unverzagt, F. R., & Jones, M. N. (2018).

Cognitive modeling as an interface between brain and behavior:
Measu r ing the semant i c dec l i ne in mi ld cogn i t i ve
impairment. Canadian Journal of Experimental Psychology, 72,
117–126. https://doi.org/10.1037/cep0000132

Jones, M. N., Kintsch, W., & Mewhort, D. J. K. (2006). High-
dimensional semantic space accounts of priming. Journal of
Memory and Language, 55, 534–552. https://doi.org/10.1016/j.
jml.2006.07.003

Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning
and order information in a composite holographic lexicon.
Psychological Review, 114, 1–37. https://doi.org/10.1037/0033-
295X.114.1.1

Kanerva, P. (1994). The spatter code for encoding concepts at many
levels. In International Conference on Artificial Neural Networks
(pp. 226–229). London: Springer.

Kwantes, P. J., Derbentseva, N., Lam, Q., Vartanian, O., &Marmurek, H.
H. (2016). Assessing the Big Five personality traits with latent se-
mantic analysis. Personality and Individual Differences, 102, 229–
233.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem:
The latent semantic analysis theory of acquisition, induction, and
representation of knowledge. Psychological Review, 104, 211–240.
https://doi.org/10.1037/0033-295X.104.2.211

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521,
436–444.

Moretti, F. (2005). Graphs, maps, trees: Abstract models for literary his-
tory. New York: Verso.

Murdock, B. B. (1995). Developing TODAM: Three models for serial-
order information. Memory & Cognition, 23, 631–645. https://doi.
org/10.3758/BF03197264

Murdock, B. B. (1997). Context and mediators in a theory of distributed
associative memory (TODAM2). Psychological Review, 104, 839–
862. https://doi.org/10.1037/0033-295X.104.4.839

Murdock, B. B., Jr. (1982). A theory for the storage and retrieval of item
and associative information. Psychological Review, 89, 609–626.
https://doi.org/10.1037/0033-295X.89.6.609

Murdock, B. B., Jr. (1983). A distributed memory model for serial-order
information. Psychological Review, 90, 316–338.

Osgood, C. E. (1952). The nature and measurement of meaning.
Psychological Review, 49, 197–237. https://doi.org/10.1037/
h0055737

Plate, T. A. (1995). Holographic reduced representations. IEEE
Transactions on Neural Networks, 6, 623–641.

Reber, A. S. (1989). Implicit learning and tacit knowledge. Journal of
Experimental Psychology: General, 118, 219–235. https://doi.org/
10.1037/0096-3445.118.3.219

Recchia, G., Sahlgren, M., Kanerva, P., & Jones, M. N. (2015). Encoding
sequential information in semantic space models: Comparing holo-
graphic reduced representation and random permutation.
Computational Intelligence and Neuroscience, 2015, 986574.
https://doi.org/10.1155/2015/986574

Roscoe, R. D., Allen, L. K., Cai, Z., Weston, J. L., Crossley, S. A., &
McNamara, D. S. (2014). The writing pal intelligent tutoring sys-
tem: Usability testing and development. Computers and
Composition, 34, 39–59.

Roscoe, R. D, & McNamara, D. S. (2013). Writing pal: Feasibility of an
intelligent writing strategy tutor in the high school classroom.
Journal of Educational Psychology 105, 1010–1025.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for informa-
tion storage and organization in the brain. Psychological Review, 65,
386–408. https://doi.org/10.1037/h0042519

Rubin, D. C., & Friendly, M. (1986). Predictingwhichwords get recalled:
Measures of free recall, availability, goodness, emotionality, and
pronounceability for 925 nouns. Memory & Cognition, 14, 79–94.

Behav Res

https://doi.org/10.1037/0033-295X.82.6.407
https://doi.org/10.1037/0033-295X.82.6.407
https://doi.org/10.1037/0096-1523.9.2.310
https://doi.org/10.3758/BF03203275
https://doi.org/10.3758/BF03203275
https://doi.org/10.3758/BF03201693
https://doi.org/10.1111/cogs.12583
https://doi.org/10.1111/cogs.12583
https://doi.org/10.1037/cep0000132
https://doi.org/10.1016/j.jml.2006.07.003
https://doi.org/10.1016/j.jml.2006.07.003
https://doi.org/10.1037/0033-295X.114.1.1
https://doi.org/10.1037/0033-295X.114.1.1
https://doi.org/10.1037/0033-295X.104.2.211
https://doi.org/10.3758/BF03197264
https://doi.org/10.3758/BF03197264
https://doi.org/10.1037/0033-295X.104.4.839
https://doi.org/10.1037/0033-295X.89.6.609
https://doi.org/10.1037/h0055737
https://doi.org/10.1037/h0055737
https://doi.org/10.1037/0096-3445.118.3.219
https://doi.org/10.1037/0096-3445.118.3.219
https://doi.org/10.1155/2015/986574
https://doi.org/10.1037/h0042519

Rubin, T., Koyejo, O., Jones, M. N., & Yarkoni, T. (2016). Generalized
correspondence-LDA models (GC-LDA) for identifying functional
regions in the brain. In D. D. Lee, M. Sugiyama, U. von Luxburg, I.
Guyon, & R. Garnett (Eds.), Advances in neural information pro-
cessing systems (pp. 1126–1134). Red Hook: Curran Associates.

Rubin, T. N., Koyejo, O., Gorgolewski, K. J., Jones, M. N., Poldrack, R.
A., &Yarkoni, T. (2017). Decoding brain activity using a large-scale
probabilistic functional–anatomical atlas of human cognition. PLoS
Computational Biology, 13, e1005649. https://doi.org/10.1371/
journal.pcbi.1005649

Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. (1986). A general
framework for parallel distributed processing. In D. E. Rumelhart, J.
L. McClelland, & the PDP Research Group (Eds.), Parallel distrib-
uted processing: Explorations in the microstructure of cognition
(Vol. 1, pp. 45–76). Cambridge, MA: MIT Press.

Sahlgren,M., Holst, A., &Kanerva, P. (2008). Permutations as a means to
encode order in word space. In B. C. Love, K. McRae, & V. M.
Sloutsky (Eds.), Proceedings of the 30th Annual Conference of the

Cognitive Science Society (pp. 1300–1305). Austin: Cognitive
Science Society.

Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D.,…
Nakagaki, T. (2010). Rules for biologically inspired adaptive net-
work design. Science, 327, 439–442.

Toglia, M. P., & Battig,W. F. (1978). Handbook of semantic word norms.
Hillsdale: Erlbaum.

Zhu, L., Kim, S.-J., Hara, M., & Aono, M. (2018). Remarkable problem-
solving ability of unicellular amoeboid organism and its mechanism.
Royal Society Open Science, 5, 180396.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Behav Res

https://doi.org/10.1371/journal.pcbi.1005649
https://doi.org/10.1371/journal.pcbi.1005649

	The Semantic Librarian: A search engine built from vector-space models of semantics
	Abstract
	The problem
	Vector-space models of semantics
	The Semantic Librarian
	Representation
	The corpus
	Deriving semantic vectors with BEAGLE
	Deriving semantic vectors with BEAGLE-RP
	Building the document vectors
	Searching the document space

	Assessing the system
	Simulation 1: Recovering a target document
	Simulation 2: Comparison of semantic and nonsemantic vector methods
	Simulation 3: Relationship between semantic and nonsemantic search

	A search interface
	Document neighborhoods
	Author neighborhoods
	Article/author similarity

	General discussion
	Appendix
	Semantic Librarian Readme

	References

